MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , * * ψ [ / ] .= .=
* = = [ ] , [ * * ψ [ / ] .= ] .=
A equação Schwinger-Dyson, de acordo com Julian Schwinger e Freeman Dyson, é uma equação da Teoria quântica de campos. Dada uma função F delimitada sobre as configurações do campo e, em seguida, para cada estado | ψ> (que é a solução QFT), então:
- / * ψ [ ] .=
S com a função de ação e \mathcal (T) operação ordenada de tempo.
Da mesma forma, na formulação do estado densidade para qualquer estado (válidos) ρ, temos:
- / * ψ [ ] .=
Estas infinitas equações podem ser usados para resolver a funções correlativas sem interrupção.
Isso também pode reduzir a ação por separação S: S [φ] = 1 / 2 D-1ij φ i + j φ Sint [φ] para o primeiro mandato quadrático D-1 e um maior rigor covariante simétrico e reversível na notação de categoria 2, na notação de DeWitt. Assim, podemos reescrever as equações do seguinte modo:
- / * ψ [ ] .=
Se F é uma função de φ e, em seguida, para um operador K, M [K] é definido como um operador que substitui K φ. Por exemplo, se
- / * ψ [ ] .=
e G é uma função de J, então:
- .
- / * ψ [ ] .=
Se temos uma função analítica Z (conhecida função geradora) J (fonte conhecida do campo) satisfazendo a equação:
- ,
- / * ψ [ ] .=
então usando a equação Schwinger-Dyson para o geradorr Z:
- / * ψ [ ] .=
Comments
Post a Comment