MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω       ψ      [  /   ]    .    .


   = [          ] ,     [ ψ      [  /   ]    . ]    .




 /  = [          ] ,     [ ψ      [  /   ]    . ]    .



ψ [ ψ      [  /   ]    . ]    .



ψ     [   ]    .


equação Schwinger-Dyson, de acordo com Julian Schwinger e Freeman Dyson, é uma equação da Teoria quântica de campos. Dada uma função F delimitada sobre as configurações do campo e, em seguida, para cada estado | ψ> (que é a solução QFT), então:

ψ     [   ]    .



S com a função de ação e \mathcal (T) operação ordenada de tempo.

Da mesma forma, na formulação do estado densidade para qualquer estado (válidos) ρ, temos:

ψ     [   ]    .

Estas infinitas equações podem ser usados para resolver a funções correlativas sem interrupção.

Isso também pode reduzir a ação por separação S: S [φ] = 1 / 2 D-1ij φ i + j φ Sint [φ] para o primeiro mandato quadrático D-1 e um maior rigor covariante simétrico e reversível na notação de categoria 2, na notação de DeWitt. Assim, podemos reescrever as equações do seguinte modo:

ψ     [   ]    .

Se F é uma função de φ e, em seguida, para um operador KM [K] é definido como um operador que substitui K φ. Por exemplo, se

ψ     [   ]    .

G é uma função de J, então:

.
ψ     [   ]    .

Se temos uma função analítica Z (conhecida função geradora) J (fonte conhecida do campo) satisfazendo a equação:

,
/
ψ     [   ]    .

então usando a equação Schwinger-Dyson para o geradorr Z:

ψ     [   ]    .

Comments

Popular posts from this blog